skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cioabă, Sebastian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    A graph on $2k+1$ vertices consisting of $$k$$ triangles which intersect in exactly one common vertex is called a $k-$friendship graph and denoted by $$F_k$$. This paper determines the graphs of order $$n$$  that have the maximum (adjacency) spectral radius among all graphs containing no $$F_k$$, for $$n$$ sufficiently large. 
    more » « less
  3. Let $$G$$ be a finite group acting transitively on $$[n]=\{1,2,\ldots,n\}$$, and  let $$\Gamma=\mathrm{Cay}(G,T)$$ be a Cayley graph of $$G$$. The graph $$\Gamma$$ is called  normal if $$T$$ is closed under conjugation. In this paper, we obtain an upper bound for the second (largest) eigenvalue of the adjacency matrix of the graph $$\Gamma$$ in terms of the second eigenvalues of certain subgraphs of $$\Gamma$$. Using this result, we develop a recursive method to  determine the second eigenvalues of certain  Cayley graphs of $$S_n$$, and we determine the second eigenvalues  of a majority of the connected normal Cayley graphs (and some of their subgraphs) of $$S_n$$  with  $$\max_{\tau\in T}|\mathrm{supp}(\tau)|\leqslant 5$$, where $$\mathrm{supp}(\tau)$$ is the set of points in $[n]$ non-fixed by $$\tau$$. 
    more » « less